मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The total cost of manufacturing x articles is C = 47x + 300x2 - x4. Find x, for which average cost is increasing - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.

बेरीज

उत्तर

Given,
Total cost function is (C) = 47x + 300x2 – x4 
Average cost CA = `"C"/"A"`

∴ CA = `(47 x + 300x^2 – x^4)/x`

∴ CA = `(x(47 + 300x – x^3))/x`

∴ CA = 47 + 300x – x3

`"dC"_"A"/"dx" = "d"/"dx" 47 + 300x  –  x^3`

∴ `"dC"_"A"/"dx"` = 0 + 300 – 3x2

∴ `"dC"_"A"/"dx"` = 3(100 –  x2)

Since average cost, CA is an increasing function, `"dC"_"A"/"dx" > 0`

∴ 3(100 – x2) > 0

∴ 100 – x2 > 0

∴ 100 > x2

∴ x2 < 100

∴ – 10 < x < 10

∴ x > – 10 and x < 10

But x > – 10 is not possible.     ...[∵ x > 0]

∴ x < 10  

∴ The average cost CA is increasing for x < 10. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Exercise 4.4 [पृष्ठ ११२]

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


For every value of x, the function f(x) = `1/7^x` is ______ 


The function `1/(1 + x^2)` is increasing in the interval ______ 


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×