मराठी

Show that the Function F(X) = Cot − L(Sinx + Cosx) is Decreasing on ( 0 , π 4 ) and Increasing on ( 0 , π 4 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?

बेरीज

उत्तर

\[\text { We have,} \]

\[f\left( x \right) = \cot^{- 1} \left( \sin x + \cos x \right)\]

\[ \Rightarrow f'\left( x \right) = \frac{- 1}{1 + \left( \sin x + \cos x \right)^2} \times \left( \cos x - \sin x \right)\]

\[ = \frac{\sin x - \cos x}{1 + \sin^2 x + \cos^2 x + 2\sin x\cos x}\]

\[ = \frac{\sin x  - \cos x}{1 + 1 + 2\sin x\cos x}\]

\[ = \frac{\sin x - \cos x}{2 + 2\sin x\cos x}\]

\[ = \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x}\]

\[\text { For } f\left( x \right) \text { to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} < 0\]

\[ \Rightarrow \frac{\sin x - \cos x }{1 + \sin x\cos x} < 0\]

\[ \Rightarrow \sin x - \cos x < 0 \left( \text { In first quadrant } \right)\]

\[ \Rightarrow \sin x < \cos x\]

\[ \Rightarrow \tan x < 1\]

\[ \Rightarrow 0 < x < \frac{\pi}{4}\]

\[So, f\left( x \right) \text { is decreasing on } \left( 0, \frac{\pi}{4} \right) . \]

\[\text { For } f\left( x \right) \text { to be increasing, we must have } \]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]

\[ \Rightarrow \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]

\[ \Rightarrow \sin x - \cos x > 0 \left(\text {  In first quadrant } \right)\]

\[ \Rightarrow \sin x > \cos x\]

\[ \Rightarrow \tan x > 1\]

\[ \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}\]

\[\text { So,} f\left( x \right) \text { is increasing on } \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 17 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = x3 - 3x is ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


A function f is said to be increasing at a point c if ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×