हिंदी

Show that the Function F(X) = Cot − L(Sinx + Cosx) is Decreasing on ( 0 , π 4 ) and Increasing on ( 0 , π 4 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?

योग

उत्तर

\[\text { We have,} \]

\[f\left( x \right) = \cot^{- 1} \left( \sin x + \cos x \right)\]

\[ \Rightarrow f'\left( x \right) = \frac{- 1}{1 + \left( \sin x + \cos x \right)^2} \times \left( \cos x - \sin x \right)\]

\[ = \frac{\sin x - \cos x}{1 + \sin^2 x + \cos^2 x + 2\sin x\cos x}\]

\[ = \frac{\sin x  - \cos x}{1 + 1 + 2\sin x\cos x}\]

\[ = \frac{\sin x - \cos x}{2 + 2\sin x\cos x}\]

\[ = \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x}\]

\[\text { For } f\left( x \right) \text { to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} < 0\]

\[ \Rightarrow \frac{\sin x - \cos x }{1 + \sin x\cos x} < 0\]

\[ \Rightarrow \sin x - \cos x < 0 \left( \text { In first quadrant } \right)\]

\[ \Rightarrow \sin x < \cos x\]

\[ \Rightarrow \tan x < 1\]

\[ \Rightarrow 0 < x < \frac{\pi}{4}\]

\[So, f\left( x \right) \text { is decreasing on } \left( 0, \frac{\pi}{4} \right) . \]

\[\text { For } f\left( x \right) \text { to be increasing, we must have } \]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]

\[ \Rightarrow \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]

\[ \Rightarrow \sin x - \cos x > 0 \left(\text {  In first quadrant } \right)\]

\[ \Rightarrow \sin x > \cos x\]

\[ \Rightarrow \tan x > 1\]

\[ \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}\]

\[\text { So,} f\left( x \right) \text { is increasing on } \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 17 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


The function f(x) = x9 + 3x7 + 64 is increasing on


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f (x) = 2 – 3 x is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×