Advertisements
Advertisements
प्रश्न
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
उत्तर
\[\text { We have,} \]
\[f\left( x \right) = \cot^{- 1} \left( \sin x + \cos x \right)\]
\[ \Rightarrow f'\left( x \right) = \frac{- 1}{1 + \left( \sin x + \cos x \right)^2} \times \left( \cos x - \sin x \right)\]
\[ = \frac{\sin x - \cos x}{1 + \sin^2 x + \cos^2 x + 2\sin x\cos x}\]
\[ = \frac{\sin x - \cos x}{1 + 1 + 2\sin x\cos x}\]
\[ = \frac{\sin x - \cos x}{2 + 2\sin x\cos x}\]
\[ = \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x}\]
\[\text { For } f\left( x \right) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} < 0\]
\[ \Rightarrow \frac{\sin x - \cos x }{1 + \sin x\cos x} < 0\]
\[ \Rightarrow \sin x - \cos x < 0 \left( \text { In first quadrant } \right)\]
\[ \Rightarrow \sin x < \cos x\]
\[ \Rightarrow \tan x < 1\]
\[ \Rightarrow 0 < x < \frac{\pi}{4}\]
\[So, f\left( x \right) \text { is decreasing on } \left( 0, \frac{\pi}{4} \right) . \]
\[\text { For } f\left( x \right) \text { to be increasing, we must have } \]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]
\[ \Rightarrow \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]
\[ \Rightarrow \sin x - \cos x > 0 \left(\text { In first quadrant } \right)\]
\[ \Rightarrow \sin x > \cos x\]
\[ \Rightarrow \tan x > 1\]
\[ \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}\]
\[\text { So,} f\left( x \right) \text { is increasing on } \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
APPEARS IN
संबंधित प्रश्न
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
The function f(x) = x9 + 3x7 + 64 is increasing on
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f (x) = 2 – 3 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)