Advertisements
Advertisements
प्रश्न
Show that f(x) = x − sin x is increasing for all x ∈ R ?
उत्तर
\[f\left( x \right) = x - \sin x\]
\[f'\left( x \right) = 1 - \cos x\]
\[\text { For f(x) to be increasing, we must have}\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 1 - \cos x > 0\]
\[ \Rightarrow f'(x) \geqslant 0 \text { for all } x \in R \left[ \because Cos x \leqslant 1 \right]\]
\[\text { So, f(x) is increasing for all } x \in R . \]
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = e2x is increasing on R.
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = x9 + 3x7 + 64 is increasing on
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.