Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with } a < b, x < a \text { or } x>b.\].
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f(x) = 10 - 6x - 2 x^2 \]
\[f'(x) = - 6 - 4x\]
\[\text { For } f(x) \text { to be increasing, we must have } \]
\[f'(x) > 0\]
\[ \Rightarrow - 6 - 4x > 0\]
\[ \Rightarrow - 4x > 6\]
\[ \Rightarrow x < \frac{- 3}{2}\]
\[ \Rightarrow x \in \left( - \infty , \frac{- 3}{2} \right)\]
\[\text { So }, f(x) \text { is increasing on } \left( - \infty , \frac{- 3}{2} \right) . \]
\[\text { For } f(x) \text { to be decreasing, we must have } \]
\[f'(x) < 0\]
\[ \Rightarrow - 6 - 4x < 0\]
\[ \Rightarrow - 4x < 6\]
\[ \Rightarrow x > \frac{- 6}{4}\]
\[ \Rightarrow x > \frac{- 3}{2}\]
\[ \Rightarrow x \in \left( \frac{- 3}{2}, \infty \right)\]
\[\text { So }, f(x) \text { is decreasing on } \left( \frac{- 3}{2}, \infty \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function f(x) = xx decreases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The function f(x) = x3 - 3x is ______.
The function f(x) = sin x + 2x is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.