Advertisements
Advertisements
प्रश्न
Show that f(x) = e2x is increasing on R.
Show that the function given by f (x) = e 2x is increasing on R.
उत्तर १
\[f\left( x \right) = e^{2x} \]
\[f'\left( x \right) = 2 e^{2x} \]
\[\text { Now,} \]
\[x \in R\]
Since the value of `e^{2x}` text is always positive for any real value of x, ` e^{2x}` > 0 .
\[ \Rightarrow 2 e^{2x} > 0\]
\[ \Rightarrow f'\left( x \right) > 0\]
\[\text { So,f(x)is increasing on R} .\]
उत्तर २
We have f(x) = e2x
f'(x) = 2e2x > 0, x `in` R
f is strictly increasing on R
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
The interval in which y = x2 e–x is increasing is ______.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = loga x is increasing on R, if
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
The function f(x) = x3 - 3x is ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = tan-1 x is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.