Advertisements
Advertisements
प्रश्न
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
विकल्प
has a minimum at x = π
has a maximum, at x = 0
is a decreasing function
is an increasing function
उत्तर
Let the f : R → R be defined by f (x) = 2x + cosx, then f : is an increasing function.
Explanation:
Given that f(x) = 2x + cos x
f'(x) = 2 – sin x
Since f'(x) > 0 ∀ x
So f(x) is an increasing function.
APPEARS IN
संबंधित प्रश्न
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Every invertible function is
Function f(x) = ax is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.