Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
विकल्प
True
False
उत्तर
True.
Explanation:
f(x) = `"x"*"e"^("x" (1 - "x"))`
∴ f '(x) = `"e"^("x" (1 - "x")) + "x"*"e"^("x" (1 - "x")) [1 - 2"x"]`
`= "e"^("x" (1 - "x")) [1 + "x" - 2"x"^2]`
If f(x) is increasing, then f '(x) > 0.
Consider f '(x) > 0
∴ `"e"^("x" (1 - "x")) (1 + "x" - 2"x"^2)` > 0
∴ 2x2 - x - 1 < 0
∴ (2x + 1)(x - 1) < 0
ab < 0 ⇔ a > 0 and b < 0 or a < 0 or b > 0
∴ Either (2x + 1) > 0 and (x – 1) < 0 or
(2x + 1) < 0 and (x – 1) > 0
Case 1: (2x + 1) > 0 and (x – 1) < 0
∴ x > `-1/2` and x < 1
i.e., x ∈ `(-1/2, 1)`
Case 2: (2x + 1) < 0 and (x – 1) > 0
∴ x < `- 1/2` and x > 1
which is not possible.
∴ f(x) is increasing on `(-1/2, 1)`
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function f(x) = x2 e−x is monotonic increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Every invertible function is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = tanx – x ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.