हिंदी

The Function F(X) = X2 E−X Is Monotonic Increasing When - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = x2 e−x is monotonic increasing when

विकल्प

  •  x ∈ R − [0, 2]

  • 0 < x < 2

  • 2 < x < ∞

  • x < 0

MCQ

उत्तर

0 < x < 2

\[f\left( x \right) = x^2 e^{- x} \]

\[f'\left( x \right) = 2x e^{- x} - x^2 e^{- x} \]

\[ = e^{- x} x\left( 2 - x \right)\]

\[\text { For f(x) to be monotonic increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow e^{- x} x\left( 2 - x \right) > 0 \left[ \because e^{- x} > 0 \right]\]

\[ \Rightarrow x\left( 2 - x \right) > 0\]

\[ \Rightarrow x\left( x - 2 \right) < 0\]

\[ \Rightarrow 0 < x < 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 11 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

The interval in which y = x2 e–x is increasing is ______.


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = tanx – x ______.


The function f(x) = tan-1 x is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


A function f is said to be increasing at a point c if ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×