Advertisements
Advertisements
प्रश्न
Function f(x) = | x | − | x − 1 | is monotonically increasing when
विकल्प
x < 0
x > 1
x < 1
0 < x < 1
उत्तर
0 < x < 1
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[\text { Case 1: Let }x < 0 \]
\[\text { If x < 0 , then }\left| x \right| = - x\]
\[ \Rightarrow \left| x - 1 \right| = - \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = - x - \left( - x + 1 \right)\]
\[ = - x + x - 1\]
\[ = - 1\]
\[f'\left( x \right) = 0\]
\[\text { So,f }\left( x \right) \text { is not monotonically increasing when x< 0.}\]
\[\text { Case 2: Let }0 < x < 1\]
\[\text { Here,} \]
\[\left| x \right| = x\]
\[ \Rightarrow \left| x - 1 \right| = - \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = x + x - 1\]
\[ = 2x - 1\]
\[f'\left( x \right) = 2 > 0\]
\[\text { So },f\left( x \right) \text { is monotonically increasing when }0 < x < 1 . \]
\[\text { Case 3: Let x > 1} \]
\[\text { Ifx > 0, then }\left| x \right| = x\]
\[ \Rightarrow \left| x - 1 \right| = \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = x - x + 1\]
\[ = 1\]
\[f'\left( x \right) = 0\]
\[\text { So },f\left( x \right)\text { is not monotonically increasing when x >1 }.\]
\[\text { Thus },f\left( x \right) \text { is monotonically increasing when 0 < x < 1} . \]
APPEARS IN
संबंधित प्रश्न
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
The function f(x) = xx decreases on the interval
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
Show that function f(x) = tan x is increasing in `(0, π/2)`.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.