हिंदी

Show that f(x) = 3x+13x is increasing in (13,1) and decreasing in (19,13). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.

योग

उत्तर

f(x) = `3x + (1)/(3x)`

∴ f'(x) = `3d/dx(x) + (1)/(3)d/dx(x^-1)`

= `3 xx 1 + (1)/(3)(-1) x^-2`

= `3 - (1)/(3x^2)`
Now, f is increasing if f'(x) > 0 and is decreasing if f'(x) < 0.

 Let `x ∈ (1/3, 3)`.

Then `(1)/(3) < x < 1`

∴ `(1)/(9) < x^2 < 1`

∴ `(1)/(3) < 3x^2 < 3`

∴ `3 >(1)/(3x^2) > (1)/(3)`

∴ `-3 < - (1)/(3x^2) < - (1)/(3)`

∴ `3 - 3 < 3 - (1)/(3x^2) < 3 - (1)/(3)`

∴ `0 < f'(x) < (8)/(3)`

∴ f'(x) > 0 for all x ∈ `(1/3, 1)`

∴ f is increasing in rhe interval `(1/3, 1)`

Let x ∈ `(1/9, 1/3)`.

Then `(1)/(9) < x < (1)/(3)`

∴ `(1)/(81) < x^2  < (1)/(9)`

∴ `(1)/(27) < 3x^2 < (1)/(3)`

∴ `27 > (1)/(3x^2) > 3`

∴ `-27 < -(1)/(3x^2) < - 3`

∴ `3 - 27 < 3 - (1)/(3x^2) < 3 - 3`

∴ – 24 < f'(x) < 0

∴ f'(x) < 0 for all x ∈ `(1/9, 1/3)`

∴ f is decreasing in the interval `(1/9, 1/3)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.4 | Q 7 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Find `dy/dx,if e^x+e^y=e^(x-y)`


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = x3 - 3x is ______.


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


The function `1/(1 + x^2)` is increasing in the interval ______ 


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


Which of the following functions is decreasing on `(0, pi/2)`?


The function f (x) = 2 – 3 x is ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


Which of the following graph represent the strictly increasing function.


Function given by f(x) = sin x is strictly increasing in.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


If f(x) = x + cosx – a then ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×