हिंदी

Find the Interval in Which F(X) is Increasing Or Decreasing F(X) = X|X|, X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?

योग

उत्तर

\[f\left( x \right) = x\left| x \right|, x \in R\]

\[\text { Case I: When x } \geq 0\]

\[f\left( x \right) = x\left| x \right| = x\left( x \right) = x^2 \]

\[ \Rightarrow f'\left( x \right) = 2x \geq 0 \forall x \geq 0\]

\[\text { So,} f\left( x \right)\text {  is increasing for x } \geq 0 . \]

\[\text { Case II: When } x < 0\]

\[f\left( x \right) = x\left| x \right| = x\left( - x \right) = - x^2 \]

\[ \Rightarrow f'\left( x \right) = - 2x \geq 0 \forall x < 0\]

\[\text { So, }f\left( x \right)\text {  is increasing for } x < 0 . \]

\[\text { Hence }, f\left( x \right)\text {  is increasing for x } \in R . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 39.1 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = ax is increasing on R, if


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


The function f (x) = 2 – 3 x is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×