Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^3 - 12 x^2 + 36x + 17\]
\[f'\left( x \right) = 3 x^2 - 24x + 36\]
\[ = 3 \left( x^2 - 8x + 12 \right)\]
\[ = 3 \left( x - 2 \right)\left( x - 6 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 3 \left( x - 2 \right)\left( x - 6 \right) > 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 6 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 2 \right)\left( x - 6 \right) > 0 \Rightarrow \left( x - 2 \right)\left( x - 6 \right) > 0 \right]\]
⇒ x < 2 or x > 6
\[ \Rightarrow x \in \left( - \infty , 2 \right) \cup \left( 6, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , 2 \right) \cup \left( 6, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 3 \left( x - 2 \right)\left( x - 6 \right) < 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 6 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 2 \right)\left( x - 6 \right) < 0 \Rightarrow \left( x - 2 \right)\left( x - 6 \right) < 0 \right]\]
\[ \Rightarrow 2 < x < 6 \]
\[ \Rightarrow x \in \left( 2, 6 \right)\]
\[\text { So,}f(x)\text { is decreasing on } x \in \left( 2, 6 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function f(x) = xx decreases on the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = ax is increasing on R, if
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that f(x) = x – cos x is increasing for all x.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f (x) = x2, for all real x, is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
y = log x satisfies for x > 1, the inequality ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?