Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 5 x^3 - 15 x^2 - 120x + 3\]
\[f'\left( x \right) = 15 x^2 - 30x - 120\]
\[ = 15 \left( x^2 - 2x - 8 \right)\]
\[ = 15 \left( x - 4 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 15 \left( x - 4 \right)\left( x + 2 \right) > 0 \]
\[ \Rightarrow \left( x - 4 \right)\left( x + 2 \right) > 0 \left[ \text { Since } 15 > 0, 15 \left( x - 4 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 4 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow\text{ x }< - 2 \ or \ x > 4\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 4, \infty \right)\]
\[\text { So },f(x)\text { is increasing on x } \in \left( - \infty , - 2 \right) \cup \left( 4, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have },\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 15 \left( x - 4 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 4 \right)\left( x + 2 \right) < 0 \left[ \text { Since } 15 > 0, 15 \left( x - 4 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 4 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 4\]
\[ \Rightarrow x \in \left( - 2, 4 \right)\]
\[\text { So, }f(x)\text { is decreasing on } x \in \left( - 2, 4 \right) .\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = xx decreases on the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = loga x is increasing on R, if
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = sin x + 2x is ______
The function `1/(1 + x^2)` is increasing in the interval ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
A function f is said to be increasing at a point c if ______.