हिंदी

Find the values of x for which the following functions are strictly decreasing : f(x) = x+25x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`

योग

उत्तर

f(x) = `x + (25)/x`

∴ f'(x) = `d/dx(x + 25/x)`

= 1 + 25 (– 1)x–2

= `1 - (25)/x^2`

f is strictly decreasing if f'(x) < 0

i.e. if `1 - (25)/x^2 < 0`

i.e. if  `1 < (25)/x^2`

i.e. if x2 < 25
i.e. if –5 < x < 5, x ≠ 0
i.e. if x ∈ (– 5, 5) – { 0 }
∴ f is strictly decreasing if x ∈ (– 5, 5) – { 0 }.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ८९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.4 | Q 3.2 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = xx decreases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


The function f(x) = 9 - x5 - x7 is decreasing for


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The function f(x) = sin x + 2x is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function `"f"("x") = "x"/"logx"` increases on the interval


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×