Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\]
\[ = \frac{3 x^4 + 8 x^3 - 30 x^2 - 72x + 84}{12}\]
\[f'\left( x \right) = \frac{12 x^3 + 24 x^2 - 60x - 72}{12}\]
\[ = \left( x^3 + 2 x^2 - 5x - 6 \right)\]
\[ = \left( x + 1 \right)\left( x^2 + x - 6 \right)\]
\[ = \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right)\]
\[\text { Here }, -1, 2 \text { and } -3 \text { are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty - 3 \right),\left( - 3, - 1 \right),\left( - 1, 2 \right)and\left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 3, - 1 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - 3, - 1 \right) \cup \left( 2, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty - 3 \right) \cup \left( - 1, 2 \right) \left[ \text { From eq }. (1) \right]\]
\[\text { So,}f(x)\text { is decreasing on x } \in \left( - \infty - 3 \right) \cup \left( - 1, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f (x) = x2, for all real x, is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?