हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F(X) = 5 X 3 2 − 3 X 5 2 X > 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[\ f\left( x \right) = 5 x^\frac{3}{2} - 3 x^\frac{5}{2} , x > 0\]

\[f'\left( x \right) = \frac{15}{2} x^\frac{1}{2} - \frac{15}{2} x^\frac{3}{2} \]

\[ = \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right)\]

\[\text { Here }, 0, 1 \text { are the roots } .\]

\[\text { The possible intervals are }\left( - \infty , 0 \right),\left( 0, 1 \right)\text { and }\left( 1, \infty \right)...(1)\]

\[\text { For f(x) to be increasing, we must have}\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right) > 0\]

\[ \Rightarrow x \in \left( 0, 1 \right)\]

\[\text { So,f(x)is increasing on } \left( 0, 1 \right) . \]

\[\text { For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right) < 0\]

\[ \Rightarrow x \in \left( 1, \infty \right)\]

\[\text { So,f(x)is decreasing on }\left( 1, \infty \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.22 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = x3 - 3x is ______.


The function f(x) = sin x + 2x is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


Function given by f(x) = sin x is strictly increasing in.


If f(x) = x + cosx – a then ______.


y = log x satisfies for x > 1, the inequality ______.


A function f is said to be increasing at a point c if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×