Advertisements
Advertisements
प्रश्न
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
उत्तर
f(x) = `x/logx`
∴ f'(x) = `d/dx(x/logx)`
= `((logx).d/dx(x) - x*d/dx(logx))/(logx)^2`
= `((logx) xx 1 - x xx 1/x)/(logx)^2`
= `(logx - 1)/(log x)^2`
f is increasing if f'(x) ≥ 0
i.e. if `(log x - 1)/(logx)^2 ≥ 0`
i.e. if log x – 1 ≥ 0 ...[∵ (log x)2 > 0]
i.e. if log x ≥ 1
i.e. if log x ≥ log e ...[∵ log e = 1]
i.e. if x ≥ e
∴ f is increasing on `[e, oo)`
f is decreasing if f'(x) ≤ 0
i.e. if `(log x - 1)/(logx)^2 ≤ 0`
i.e. if log x – 1 ≤ 0 ...[∵ (log x)2 > 0]
i.e. if log x ≤ 1
i.e. if log x ≤ log e
i.e. if x ≤ e
Also, x > 0 and x ≠ 1 because f(x) = `x/logx` is not defined at x = 1
∴ f is decreasing in (0, e] – {1}
Hence, f is increasing in `[e, oo)` and decreasing in (0, e] – {1}.
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Every invertible function is
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
y = x(x – 3)2 decreases for the values of x given by : ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = 2 – 3 x is ____________.
The function f (x) = x2, for all real x, is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
y = log x satisfies for x > 1, the inequality ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.