हिंदी

Solve the following : Find the intervals on which the function f(x) = xlogx is increasing and decreasing. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.

योग

उत्तर

f(x) = `x/logx`

∴ f'(x) = `d/dx(x/logx)`

= `((logx).d/dx(x) - x*d/dx(logx))/(logx)^2`

= `((logx) xx 1 - x xx 1/x)/(logx)^2`

= `(logx - 1)/(log x)^2`

f is increasing if f'(x) ≥ 0

i.e. if `(log x - 1)/(logx)^2 ≥ 0`

i.e. if log x – 1 ≥ 0          ...[∵ (log x)2 > 0]

i.e. if log x ≥ 1

i.e. if log x ≥ log e          ...[∵  log e = 1]

i.e. if x ≥ e

∴ f is increasing on `[e, oo)`

f is decreasing if f'(x) ≤ 0

i.e. if `(log x - 1)/(logx)^2 ≤ 0`

i.e. if log x – 1 ≤ 0                        ...[∵ (log x)2 > 0]

i.e. if log x ≤ 1

i.e. if log x ≤ log e

i.e. if x ≤ e

Also, x > 0 and x ≠ 1 because f(x) = `x/logx` is not defined at x = 1

∴ f is decreasing in (0, e] – {1}

Hence, f is increasing in `[e, oo)` and decreasing in (0, e] – {1}.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Miscellaneous Exercise 2 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 11 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = e2x is increasing on R.


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Every invertible function is


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function `1/(1 + x^2)` is increasing in the interval ______ 


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f (x) = 2 – 3 x is ____________.


The function f (x) = x2, for all real x, is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


y = log x satisfies for x > 1, the inequality ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×