Advertisements
Advertisements
प्रश्न
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = \frac{1}{1 + x^2}\]
\[\text { Case 1: Let} \text{x}_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow {x_1}^2 < {x_2}^2 \]
\[ \Rightarrow 1 + {x_1}^2 < 1 + {x_2}^2 \]
\[ \Rightarrow \frac{1}{1 + {x_1}^2} > \frac{1}{1 + {x_2}^2}\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right) \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So, }f\left( x \right) \text { is decreasing on }\left( 0, \infty \right).\]
\[\text { Case } 2: Let x_1 , x_2 \in ( - \infty , 0]\text { such that } x_1 < x_2 . \text { Then, }\]
\[ x_1 < x_2 \]
\[ \Rightarrow {x_1}^2 > {x_2}^2 \]
\[ \Rightarrow 1 + {x_1}^2 > 1 + {x_2}^2 \]
\[ \Rightarrow \frac{1}{1 + {x_1}^2} < \frac{1}{1 + {x_2}^2}\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in ( - \infty , 0]\]
\[\text { So, }f\left( x \right) \text { is increasing on } ( - \infty , 0].\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function f(x) = x3 - 3x is ______.
The function f(x) = sin x + 2x is ______
The function f (x) = 2 – 3 x is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The function f(x) = sin4x + cos4x is an increasing function if ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.