Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[ f\left( x \right) = 2 x^3 - 15 x^2 + 36x + 1\]
\[f'\left( x \right) = 6 x^2 - 30x + 36\]
\[ = 6 \left( x^2 - 5x + 6 \right)\]
\[ = 6 \left( x - 2 \right)\left( x - 3 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x - 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 6 > 0, 6\left( x - 2 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 2 \right)\left( x - 3 \right) > 0 \right]\]
\[ \Rightarrow x < 2 \ or \ x > 3\]
\[ \Rightarrow x \in \left( - \infty , 2 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , 2 \right) \cup \left( 3, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x - 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 3 \right) < 0 \left[ \text { Since } 6 > 0, 6\left( x - 2 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 2 \right)\left( x - 3 \right) < 0 \right]\]
\[ \Rightarrow 2 < x < 3 \]
\[ \Rightarrow x \in \left( 2, 3 \right)\]
\[\text { So },f(x)\text { is decreasing on } x \in \left( 2, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function f(x) = x2 e−x is monotonic increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = loga x is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f (x) = 2 – 3 x is ____________.
The function f(x) = tan-1 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
y = log x satisfies for x > 1, the inequality ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.