Advertisements
Advertisements
प्रश्न
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
उत्तर
\[\text { Here,} \]
\[f\left( x \right) = \sin x\]
\[\text { Domain of sin x is }\left( 0, \pi \right).\]
\[f'\left( x \right) = \cos x\]
\[\text { For x } \in \left( 0, \frac{\pi}{2} \right), \cos x > 0 \left[ \because \cos x\text { is positive in first quadrant} \right]\]
\[f'\left( x \right) > 0\]
\[\text { So,f(x)is increasing for
}\left( 0, \frac{\pi}{2} \right) . \]
\[\text { For x} \in \left( \frac{\pi}{2}, \pi \right), \cos x < 0 \left[ \because \cos x\text { is negative in second quadrant } \right]\]
\[\text { So,f(x)is decreasing for }\left( \frac{\pi}{2}, \pi \right).\]
\[\text { Since }f(x)\text { is increasing on } \left( 0, \frac{\pi}{2} \right) \text { and decreasing on}\left( \frac{\pi}{2}, \pi \right), f\left( x \right) \text { is neither decreasing nor increasing on }\left( 0, \pi \right).\]
APPEARS IN
संबंधित प्रश्न
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
The function f(x) = xx decreases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = x3 − 27x + 5 is monotonically increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = ax is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The function f(x) = x9 + 3x7 + 64 is increasing on
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f (x) = 2 – 3 x is ____________.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Function given by f(x) = sin x is strictly increasing in.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.