हिंदी

Prove that function f(x) = x-1x, x ∈ R and x ≠ 0 is increasing function - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function

योग

उत्तर

f(x) = `x - 1/x`, x ∈ R, x ≠ 0

∴ f'(x) = `1 + 1/x^2`

x2 is always positive for x ≠ 0

∴ f′(x) > 0 for all x ∈ R, x ≠ 0

Hence, f(x) is an increasing function for all x ∈ R, x ≠ 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.2: Applications of Derivatives - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = loga x is increasing on R, if


The function f(x) = x9 + 3x7 + 64 is increasing on


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The slope of tangent at any point (a, b) is also called as ______.


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The function f(x) = tan-1 x is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Which of the following graph represent the strictly increasing function.


Function given by f(x) = sin x is strictly increasing in.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×