हिंदी

The function f(x) = 2x2-1x4, x > 0, decreases in the interval ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.

रिक्त स्थान भरें

उत्तर

The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval `(1, oo)`.

Explanation:

We have f(x) = `(2x^2 - 1)/x^4`

f'(x) = `(x^4(4x) - (2x^2 - 1) * 4x^3)/x^8`

⇒ f'(x) = `(4x^5 - (2x^2 - 1) * 4x^3)/x^8`

= `(4x^3[x^2 - 2x^2 + 1])/x^8`

= `(4(-x^2 + 1))/x^5`

For decreasing the function f'(x) < 0

∴ `(4(-x^2 + 1))/x^5 < 0`

⇒  `-x^2 + 1 < 0`

⇒ x2 < 1

∴ x > ± 1

⇒  `x ∈ (1, oo)`

Hence, the required interval is `(1, oo)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 63 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


The interval in which y = x2 e–x is increasing is ______.


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


The function f(x) = xx decreases on the interval


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Find `dy/dx,if e^x+e^y=e^(x-y)`


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


y = log x satisfies for x > 1, the inequality ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×