Advertisements
Advertisements
प्रश्न
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
उत्तर
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is `2sqrt("ab")`.
Explanation:
Here, f(x) = `"a"x + "b"/x`
⇒ f'(x) = `"a" - "b"/x^2`
For maximum and minimum value f'(x) = 0
∴ `"a" - "b"/x^2` = 0
⇒ `x^2 = "b"/"a"`
⇒ x = `+- sqrt("b"/"a")`
Now f"(x) = `(2"b")/x^3`
`"f''"(x)_(x = sqrt("b"/"a")) = (2"b")/(("b"/"a")^(3/2))`
= `2 ("a"^(3/2))/("b"^(1/2)) > 0`
Hence, minima
So the least value of the function at x = `sqrt("b"/"a")` is
`"f"(sqrt("b"/"a")) = "a" * sqrt("b"/"a") + "b"/sqrt("b"/"a")`
= `sqrt("ab") + sqrt("ab")`
= `2sqrt("ab")`
Hence, least value is `2sqrt("ab")`.
APPEARS IN
संबंधित प्रश्न
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x(x −2)2 on the interval [0, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:
It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.