Advertisements
Advertisements
प्रश्न
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
उत्तर
Given that length of wire = 50 m
let the length of one piece for the shape of the square be x m
∴ Length of other pieces for the shape of circle = (50 - x) m
Now, perimeter of square = 4a = x
⇒ a = `(x)/(4)`
and circumference of circle = 2πr = 50 - x
⇒ r = `(50 - x)/(2π)`
Combined area = a2 + π r2
= `x^2/(16) + π ( (50 - x)/(2π))^2`
= `x^2/(16) + π (50 - x)^2/(4π^2)`
A = `x^2/(16) + (50 - x)^2/(4π)`
Differentiate w.r.t. x, we have
`(d"A")/(dx) = (2x)/(16) + (2 (50 - x) (-1))/(4π)`
`(d"A")/(dx) = (x)/(8) + (( x- 50 ))/(2π)`
= `(πx + 4x - 200)/( 8π)`
= `(x ( 4 + π) - 200)/ (8π)`
For maximum or minimum put `(d"A")/(dx)` = 0
∴ x (4 + π) - 200 = 0
x = `(200)/(4 + π)`
`(d^2"A")/(dx^2)` is positive ( >0)
For x = `(200)/(4 + π)`, because
`(d^2"A")/(dx^2) = (4 + π)/(8π)` ( independent of x)
So, length of wire for square shape is x = `(200)/(4 + π)` m
and length of wire for circle shape = 50 - x
= 50 - `(200)/(4 + π)`
= `(50π)/(4 + π)`m
APPEARS IN
संबंधित प्रश्न
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
State Rolle's theorem ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`
The maximum value of sinx + cosx is ______.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.