हिंदी

Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π

योग

उत्तर

f(x) = secx + 2 log cosx

Therefore, f'(x) = secx tanx – 2 tanx = tanx (secx –2)

f'(x) = 0

⇒ tanx = 0 or secx = 2 or cosx = `1/2`

Therefore, possible values of x are x = 0

or x = π and x = `pi/3` or x = `(5pi)/3`

Again, f′(x) = sec2x (secx –2) + tanx (secx tanx)

= sec3x + secx tan2x – 2sec2x

= secx (sec2x + tan2x – 2secx).

We note that

f′(0) = 1(1 + 0 – 2) = –1 < 0. Therefore, x = 0 is a point of maxima.

f′(π) = –1(1 + 0 + 2) = –3 < 0. Therefore, x = π is a point of maxima.

`"f'"(pi/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `pi/3` is a point of minima.

`"f'"((5pi)/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `(5pi)/3` is a point of minima.

Maximum Value of y at x = 0 is 1 + 0 = 1

Maximum Value of y at x = π is –1 + 0 = –1

Minimum Value of y at x = `pi/3` is `2 + 2 log  1/2` = 2(1 – log2)

Minimum Value of y at x = `(5pi)/3` is `2 + 2 log  1/2` = 2(1 – log2)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Solved Examples [पृष्ठ १२८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Solved Examples | Q 15 | पृष्ठ १२८

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Lagrange's mean value theorem ?


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×