मराठी

Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π

बेरीज

उत्तर

f(x) = secx + 2 log cosx

Therefore, f'(x) = secx tanx – 2 tanx = tanx (secx –2)

f'(x) = 0

⇒ tanx = 0 or secx = 2 or cosx = `1/2`

Therefore, possible values of x are x = 0

or x = π and x = `pi/3` or x = `(5pi)/3`

Again, f′(x) = sec2x (secx –2) + tanx (secx tanx)

= sec3x + secx tan2x – 2sec2x

= secx (sec2x + tan2x – 2secx).

We note that

f′(0) = 1(1 + 0 – 2) = –1 < 0. Therefore, x = 0 is a point of maxima.

f′(π) = –1(1 + 0 + 2) = –3 < 0. Therefore, x = π is a point of maxima.

`"f'"(pi/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `pi/3` is a point of minima.

`"f'"((5pi)/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `(5pi)/3` is a point of minima.

Maximum Value of y at x = 0 is 1 + 0 = 1

Maximum Value of y at x = π is –1 + 0 = –1

Minimum Value of y at x = `pi/3` is `2 + 2 log  1/2` = 2(1 – log2)

Minimum Value of y at x = `(5pi)/3` is `2 + 2 log  1/2` = 2(1 – log2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Solved Examples [पृष्ठ १२८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Solved Examples | Q 15 | पृष्ठ १२८

संबंधित प्रश्‍न

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


State Rolle's theorem ?


State Lagrange's mean value theorem ?


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×