Advertisements
Advertisements
प्रश्न
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
उत्तर
f(x) = secx + 2 log cosx
Therefore, f'(x) = secx tanx – 2 tanx = tanx (secx –2)
f'(x) = 0
⇒ tanx = 0 or secx = 2 or cosx = `1/2`
Therefore, possible values of x are x = 0
or x = π and x = `pi/3` or x = `(5pi)/3`
Again, f′(x) = sec2x (secx –2) + tanx (secx tanx)
= sec3x + secx tan2x – 2sec2x
= secx (sec2x + tan2x – 2secx).
We note that
f′(0) = 1(1 + 0 – 2) = –1 < 0. Therefore, x = 0 is a point of maxima.
f′(π) = –1(1 + 0 + 2) = –3 < 0. Therefore, x = π is a point of maxima.
`"f'"(pi/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `pi/3` is a point of minima.
`"f'"((5pi)/3)` = 2(4 + 3 – 4) = 6 > 0. Therefore, x = `(5pi)/3` is a point of minima.
Maximum Value of y at x = 0 is 1 + 0 = 1
Maximum Value of y at x = π is –1 + 0 = –1
Minimum Value of y at x = `pi/3` is `2 + 2 log 1/2` = 2(1 – log2)
Minimum Value of y at x = `(5pi)/3` is `2 + 2 log 1/2` = 2(1 – log2)
APPEARS IN
संबंधित प्रश्न
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
If f : [−5, 5] → R is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?
State Rolle's theorem ?
State Lagrange's mean value theorem ?
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.