मराठी

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = X2 − 4x + 3 on [1, 3] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?

बेरीज

उत्तर

f(x)=x24x+3

We know that a polynomial function is everywhere derivable and hence continuous.
So, being a polynomial function, 

f(x)is continuous and derivable on [1,3] .

Also,

f(1)=(1)24(1)+3=14+3=0

f(3)=(3)24(3)+3=912+3=0

f(1)=f(3)=0

Thus, all the conditions of Rolle's theorem are satisfied.
Now, we have to show that there exists c(1,3) such that f(c)=0 .

We have

f(x)=x24x+3

f(x)=2x4

f(x)=02x4=0x=2

Thus, 

c=2(1,3) such that f(c)=0

Hence, Rolle's theorem is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.1 | Q 2.2 | पृष्ठ ९

संबंधित प्रश्‍न

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f(x)={4x+5,0x12x3,1<x2 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on [0,π2] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x)=x24 on [2,4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Let C be a curve defined parametrically as x=acos3θ,y=asin3θ,0θπ2 . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If the polynomial equation a0xn+an1xn1+an2xn2+...+a2x2+a1x+a0=0 n positive integer, has two different real roots α and β, then between α and β, the equation n anxn1+(n1)an1xn2+...+a1=0 has .

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Rolle's theorem for the function f(x)=x(x+1)ex defined on [−1, 0] is


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on [-π2,π2]


Minimum value of f if f(x) = sinx in [-π2,π2] is ______.


Prove that f(x) = sinx + 3 cosx has maximum value at x = π6


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.