मराठी

If the Polynomial Equation a 0 X N + a N − 1 X N − 1 + a N − 2 X N − 2 + . . . + a 2 X 2 + a 1 X + a 0 = 0 N Positive Integer, Has Two Different Real - Mathematics

Advertisements
Advertisements

प्रश्न

If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 

पर्याय

  • exactly one root

  • almost one root

  • at least one root

  • no root

MCQ

उत्तर

 at least one root

We observe that, \[n a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0\] is the derivative of the polynomial \[a_n x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\]

Polynomial function is continuous every where in R and consequently derivative in R
Therefore, \[a_n x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0\] is continuous on

\[\left[ \alpha, \beta \right]\] and derivative on \[\left( \alpha, \beta \right)\].
Hence, it satisfies the both the conditions of Rolle's theorem.
By algebraic interpretation of Rolle's theorem, we know that between any two roots of a function \[f\left( x \right)\] , there exists at least one root of its derivative.
Hence, the equation \[n a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0\] will have at least one root between \[\alpha \text{ and } \beta\].
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.4 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.4 | Q 1 | पृष्ठ १९

संबंधित प्रश्‍न

f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×