Advertisements
Advertisements
प्रश्न
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
उत्तर
We have,
\[f\left( x \right) = x + \frac{1}{x} = \frac{x^2 + 1}{x}\]
Clearly, \[f\left( x \right)\] is continuous on \[\left[ 1, 3 \right]\] and derivable on \[\left( 1, 3 \right)\]
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some \[c \in \left( 1, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1} = \frac{f\left( 3 \right) - f\left( 1 \right)}{2}\]
Now, \[f\left( x \right) = \frac{x^2 + 1}{x}\]\[f'\left( x \right) = \frac{x^2 - 1}{x^2}\]\[f\left( 1 \right) = 2\],\[f\left( 3 \right) = \frac{10}{3}\]
\[\Rightarrow \frac{x^2 - 1}{x^2} = \frac{4}{6}\]
\[ \Rightarrow \frac{x^2 - 1}{x^2} = \frac{2}{3}\]
\[ \Rightarrow 3 x^2 - 3 = 2 x^2 \]
\[ \Rightarrow x = \pm \sqrt{3}\]
Thus, \[c = \sqrt{3} \in \left( 1, 3 \right)\] such that
APPEARS IN
संबंधित प्रश्न
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
If f : [−5, 5] → R is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?
Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?
Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
State Rolle's theorem ?
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
If f (x) = ex sin x in [0, π], then c in Rolle's theorem is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.
Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :-