मराठी

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = X2 − 5x + 4 on [1, 4] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?

बेरीज

उत्तर

According to Rolle’s theorem, if f(x) is a real valued function defined on [a, b] such that it is continuous on [a, b], it is differentiable on (a, b) and f(a) = f(b), then there exists a real number c ∈(a, b) such that f(c) = 0.

Now, f(x) is defined for all x ∈[1, 4].
At each point of [1, 4], the limit of f(x) is equal to the value of the function. Therefore, f(x) is continuous on [1, 4].

Also,f' (x) = 2x - 5 exists for all x ∈ (1, 4).

So, f(x) is differentiable on (1, 4).

Also,
 f(1) = f(4) = 0

Thus, all the three conditions of Rolle’s theorem are satisfied.

Now, we have to show that there exists c ∈(1, 4) such that f'(c) = 0.

We have

f' (x) = 2x - 5

\[\therefore f'\left( x \right) = 0\] 
\[ \Rightarrow 2x - 5 = 0\] 
\[ \Rightarrow x = \frac{5}{2}\]
[Since `c = 5/2` ∈ (1, 4) such that f' (c) = 0 ]
Hence, Rolle’s theorem is verified.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.1 | Q 3.16 | पृष्ठ ९

संबंधित प्रश्‍न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


State Lagrange's mean value theorem ?


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


The minimum value of `1/x log x` in the interval `[2, oo]` is


The function f(x) = [x], where [x] =greater integer of x, is


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×