Advertisements
Advertisements
प्रश्न
The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is
पर्याय
1
−1
3/2
1/3
उत्तर
1
The given function is \[f\left( x \right) = x^3 - 3x\] .
This is a polynomial function, which is continuous and derivable in R.
Therefore, the function is continuous on [0,\[\sqrt{3}\]] and derivable on (0,\[\sqrt{3}\])
Differentiating the given function with respect to x, we get
\[f'\left( x \right) = 3 x^2 - 3\]
\[ \Rightarrow f'\left( c \right) = 3 c^2 - 3\]
\[ \therefore f'\left( c \right) = 0 \]
\[ \Rightarrow 3 c^2 - 3 = 0\]
\[ \Rightarrow c^2 = 1\]
\[ \Rightarrow c = \pm 1\]
Thus, \[c = 1 \in \left[ 0, \sqrt{3} \right]\] for which Rolle's theorem holds.
Hence, the required value of c is 1.
APPEARS IN
संबंधित प्रश्न
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex cos x on [−π/2, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = tan−1 x on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
State Rolle's theorem ?
State Lagrange's mean value theorem ?
Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?
For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
If f (x) = ex sin x in [0, π], then c in Rolle's theorem is
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is
Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :-