मराठी

At What Point on the Following Curve, is the Tangent Parallel to X-axis Y = E 1 − X 2 on [−1, 1] ? - Mathematics

Advertisements
Advertisements

प्रश्न

At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?

बेरीज

उत्तर

\[f\left( x \right) = e^{1 - x^2}\]

Since \[f\left( x \right)\] is an exponential function, which is continuous and derivable on its domain,\[f\left( x \right)\] is continuous on \[\left[ - 1, 1 \right]\] and differentiable on \[\left( - 1, 1 \right)\].

Also, 
\[f\left( 1 \right) = f\left( - 1 \right) = 1\]
Thus, all the conditions of Rolle's theorem are satisfied.
Consequently, there exists at least one point c
\[\in \left( - 1, 1 \right)\] for which  \[f'\left( c \right) = 0\] .
But 
\[f'\left( c \right) = 0 \Rightarrow - 2c e^{1 - c^2} = 0 \Rightarrow c = 0 \left( \because e^{1 - c^2} \neq 0 \right)\]
\[\therefore f\left( c \right) = f\left( 0 \right) = e\] 
By the geometrical interpretation of Rolle's theorem, \[\left( 0, e \right)\] is the point on \[y = e^{1 - x^2}\]  where the tangent is parallel to the x-axis .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.1 | Q 8.2 | पृष्ठ ९

संबंधित प्रश्‍न

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


The maximum value of sinx + cosx is ______.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×