मराठी

Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?

बेरीज

उत्तर

First, let us write the conditions for the applicability of Rolle’s theorem:

For a Real valued function ‘f':

a) The function ‘f' needs to be continuous in the closed interval [a, b].

b) The function ‘f' needs differentiable on the open interval (a, b). 

c) f(a) = f(b)

Then there exists at least one c in the open interval (a,b) such that f'(c) = 0.

Given function is:

= f(x) = sinx − sin2x on [0, 1]

We know that sine function is continuous and differentiable over R.

Let's check the values of the function ‘f" at the extremums. 

⇒ f(0) = sin(0) − sin2(0)

⇒ f(0) = 0 − sin(0)

⇒ f(0) = 0

⇒ f(π) = sin(π) − sin2(π)

⇒ f(π) = 0 − sin(2π)

⇒ f(π) = 0

We got f(0) = f(π). So, there exists a ce(0,m) such that f'(c) = 0.

Let's find the derivative of the function ‘f’ 

⇒ f' (x) = `(s(sinx - sin2x))/dx`

⇒ f' (x) = cosx − cos2x `(d(2x))/dx`

⇒ f' (x) = cosx − 2cos2x

⇒ f' (x) = cosx − 4cos2x + 2

We have f' (c) = 0

⇒ cosc − 4cos2c + 2 = 0

⇒ cosc = `(-1±sqrt((1)^2 - (4 xx -4 xx 2)))/(2 xx -4)`

⇒ cosc = `(-1±sqrt(1 + 33))/(-8)`

⇒ c = `cos^-1 ((-1 ± sqrt33)/(-8))`

We can see that C∈ (0, π)

∴ Rolle's theorem is verified. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.1 | Q 3.18 | पृष्ठ ९

संबंधित प्रश्‍न

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×