मराठी

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = Sin4 X + Cos4 X on [ 0 , π 2 ] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?

बेरीज

उत्तर

The given function is \[f\left( x \right) = \sin^4 x + \cos^4 x\] . 

Since 

\[\sin x \text { and } \cos x\] are everywhere continuous and differentiable,

\[f\left( x \right) = \sin^4 x + \cos^4 x\] is continuous on \[\left[ 0, \frac{\pi}{2} \right]\] and differentiable on \[\left( 0, \frac{\pi}{2} \right)\] .
Also,
\[f\left( \frac{\pi}{2} \right) = f\left( 0 \right) = 1\]
Thus, \[f\left( x \right)\] satisfies all the conditions of Rolle's theorem.
Now, we have to show that there exists \[c \in \left( 0, \frac{\pi}{2} \right)\] such that \[f'\left( c \right) = 0\] .
We have

\[f\left( x \right) = \sin^4 x + \cos^4 x\]

\[ \Rightarrow f'\left( x \right) = 4 \sin^3 x\cos x - 4 \cos^3 x\sin x\]

\[\therefore f'\left( x \right) = 0\]

\[ \Rightarrow 4 \sin^3 x\cos x - 4 \cos^3 x\sin x = 0\]

\[ \Rightarrow \sin^3 x\cos x - \cos^3 x\sin x = 0\]

\[ \Rightarrow \tan^3 x - \tan x = 0\]

\[ \Rightarrow \tan x\left( \tan^2 x - 1 \right) = 0\]

\[ \Rightarrow \tan x = 0, \tan^2 x = 1\]

\[ \Rightarrow \tan x = 0, \tan x = \pm 1\]

\[ \Rightarrow x = 0, x = \frac{\pi}{4}, \frac{3\pi}{4}\]

Thus \[c = \frac{\pi}{4} \in \left( 0, \frac{\pi}{2} \right)\] such that \[f'\left( c \right) = 0\] .

​Hence, Rolle's theorem is verified.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.1 | Q 3.17 | पृष्ठ ९

संबंधित प्रश्‍न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


State Lagrange's mean value theorem ?


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


The maximum value of sinx + cosx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×