Advertisements
Advertisements
प्रश्न
Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?
उत्तर
Let:
\[f\left( x \right) = x^3 - 3x\]
The tangent to the curve is parallel to the chord joining the points \[\left( 1, - 2 \right)\] and \[\left( 2, 2 \right)\].
Assume that the chord joins the points \[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .
\[\therefore\] \[a = 1, b = 2\]
The polynomial function is everywhere continuous and differentiable.
So,\[f\left( x \right) = x^3 - 3x\] is continuous on \[\left[ 1, 2 \right]\] and differentiable on \[\left( 1, 2 \right)\] .
Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists
\[c \in \left( 1, 2 \right)\] such that
\[f'\left( c \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\] .
Now,
\[f\left( x \right) = x^3 - 3x\]\[\Rightarrow\] \[f'\left( x \right) = 3 x^2 - 3\],\[f\left( 1 \right) = - 2, f\left( 2 \right) = 2\]
\[\therefore\] \[f'\left( x \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\]\[\Rightarrow\] \[3 x^2 - 3 = \frac{2 + 2}{2 - 1} \Rightarrow 3 x^2 = 7 \Rightarrow x = \pm \sqrt{\frac{7}{3}}\]
Thus, \[c = \pm \sqrt{\frac{7}{3}}\] such that \[f'\left( c \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\].
Clearly,
\[f\left( \sqrt{\frac{7}{3}} \right) = \left[ \left( \frac{7}{3} \right)^\frac{3}{2} - 3\sqrt{\frac{7}{3}} \right] = \sqrt{\frac{7}{3}}\left[ \frac{7}{3} - 3 \right] = \sqrt{\frac{7}{3}}\left[ \frac{- 2}{3} \right] = \frac{- 2}{3}\sqrt{\frac{7}{3}}\] and \[f\left( - \sqrt{\frac{7}{3}} \right) = \frac{2}{3}\sqrt{\frac{7}{3}}\]
∴ \[f\left( c \right) = \mp \frac{2}{3}\sqrt{\frac{7}{3}}\]
Thus, \[\left( c, f\left( c \right) \right)\] , i.e.
\[\left( \pm \sqrt{\frac{7}{3}}, \mp \frac{2}{3}\sqrt{\frac{7}{3}} \right)\] , are points on the given curve where the tangent is parallel to the chord joining the points \[\left( 1, - 2 \right)\] and \[\left( 2, 2 \right)\] .
APPEARS IN
संबंधित प्रश्न
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
State Rolle's theorem ?
State Lagrange's mean value theorem ?
For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above LPP and solve it graphically and find the maximum profit.
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is
The minimum value of `1/x log x` in the interval `[2, oo]` is