हिंदी

Find the Points on the Curve Y = X3 − 3x, Where the Tangent to the Curve is Parallel to the Chord Joining (1, −2) and (2, 2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?

योग

उत्तर

​Let: 

\[f\left( x \right) = x^3 - 3x\] 

The tangent to the curve is parallel to the chord joining the points  \[\left( 1, - 2 \right)\] and \[\left( 2, 2 \right)\]. 

Assume that the chord joins the points \[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .

\[\therefore\] \[a = 1, b = 2\]

The polynomial function is everywhere continuous and differentiable.
So,\[f\left( x \right) = x^3 - 3x\] is continuous on \[\left[ 1, 2 \right]\] and differentiable on \[\left( 1, 2 \right)\] .

Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists

\[c \in \left( 1, 2 \right)\] such that 

\[f'\left( c \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\] .

Now,

\[f\left( x \right) = x^3 - 3x\]\[\Rightarrow\] \[f'\left( x \right) = 3 x^2 - 3\],\[f\left( 1 \right) = - 2, f\left( 2 \right) = 2\]

\[\therefore\] \[f'\left( x \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\]\[\Rightarrow\] \[3 x^2 - 3 = \frac{2 + 2}{2 - 1} \Rightarrow 3 x^2 = 7 \Rightarrow x = \pm \sqrt{\frac{7}{3}}\]

Thus, \[c = \pm \sqrt{\frac{7}{3}}\] such that ​\[f'\left( c \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\].

Clearly,

\[f\left( \sqrt{\frac{7}{3}} \right) = \left[ \left( \frac{7}{3} \right)^\frac{3}{2} - 3\sqrt{\frac{7}{3}} \right] = \sqrt{\frac{7}{3}}\left[ \frac{7}{3} - 3 \right] = \sqrt{\frac{7}{3}}\left[ \frac{- 2}{3} \right] = \frac{- 2}{3}\sqrt{\frac{7}{3}}\] and \[f\left( - \sqrt{\frac{7}{3}} \right) = \frac{2}{3}\sqrt{\frac{7}{3}}\]

∴ \[f\left( c \right) = \mp \frac{2}{3}\sqrt{\frac{7}{3}}\]

Thus, \[\left( c, f\left( c \right) \right)\] , i.e.​  

\[\left( \pm \sqrt{\frac{7}{3}}, \mp \frac{2}{3}\sqrt{\frac{7}{3}} \right)\] , are points on the given curve where the tangent is parallel to the chord joining the points \[\left( 1, - 2 \right)\] and \[\left( 2, 2 \right)\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 8 | पृष्ठ १८

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Lagrange's mean value theorem ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


The function f(x) = [x], where [x] =greater integer of x, is


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×