हिंदी

Find a Point on the Curve Y = X3 + 1 Where the Tangent is Parallel to the Chord Joining (1, 2) and (3, 28) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?

योग

उत्तर

​Let : 

\[f\left( x \right) = x^3 + 1\] 

The tangent to the curve is parallel to the chord joining the points  \[\left( 1, 2 \right)\] and \[\left( 3, 28 \right)\] .

Assume that the chord joins the points \[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .

\[\therefore\] \[a = 1, b = 3\]
The polynomial function is everywhere continuous and differentiable.
So, \[f\left( x \right) = x^3 + 1\] is continuous on \[\left[ 1, 3 \right]\] and differentiable on \[\left( 1, 3 \right)\] .
Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists \[c \in \left( 1, 3 \right)\] such that 
\[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1}\] .
Now, 
\[f\left( x \right) = x^3 + 1\]\[\Rightarrow\] \[f'\left( x \right) = 3 x^2\] ,\[f\left( 1 \right) = 2, f\left( 3 \right) = 28\]
\[\therefore\] \[f'\left( x \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1}\]
\[\Rightarrow\] \[3 x^2 = \frac{26}{2} \Rightarrow 3 x^2 = 13 \Rightarrow x = \pm \sqrt{\frac{13}{3}}\]
Thus,\[c = \sqrt{\frac{13}{3}}\]  such that ​
\[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1}\] .
Clearly, 
\[f\left( c \right) = \left[ \left( \frac{13}{3} \right)^\frac{3}{2} + 1 \right]\]
Thus, \[\left( c, f\left( c \right) \right)\]  i.e.​  
\[\left( \sqrt{\frac{13}{3}}, 1 + \left( \frac{13}{3} \right)^\frac{3}{2} \right)\]  is a point on the given curve where the tangent is parallel to the chord joining the points \[\left( 1, 2 \right)\] and \[\left( 3, 28 \right)\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 9 | पृष्ठ १८

संबंधित प्रश्न

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Lagrange's mean value theorem ?


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


The minimum value of `1/x log x` in the interval `[2, oo]` is


The function f(x) = [x], where [x] =greater integer of x, is


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×