हिंदी

Using Lagrange'S Mean Value Theorem, Prove that (B − A) Sec2 a < Tan B − Tan a < (B − A) Sec2 B Where 0 < a < B < π 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?

योग

उत्तर

​Consider, the function

\[f\left( x \right) = \tan x, x \in \left[ a, b \right], 0 < a < b < \frac{\pi}{2}\]

Clearly, \[f\left( x \right)\] is continuous on \[\left[ a, b \right]\] and derivable on  \[\left( a, b \right)\] .

Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently,\[c \in \left( a, b \right)\] such that \[f'\left( c \right) = \frac{f\left( b \right) - f\left( a \right)}{b - a}\] .

Now, 

\[f\left( x \right) = \tan x\]\[\Rightarrow\] \[f'\left( x \right) = se c^2 x\],\[f\left( a \right) = \tan a, f\left( b \right) = \tan b\]

\[\therefore\] \[f'\left( c \right) = \frac{f\left( b \right) - f\left( a \right)}{b - a}\]\[\Rightarrow\] \[se c^2 c = \frac{\tan b - \tan a}{b - a} . . . \left( 1 \right)\]

Now, 

\[c \in \left( a, b \right)\]

\[ \Rightarrow a < c < b\]

\[ \Rightarrow se c^2 a < se c^2 c < se c^2 b \left[ \because se c^2 x \text {b is increasing in } \left( 0, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow se c^2 a < \frac{\tan b - \tan a}{b - a} < se c^2 b \left[ \text { from } \left( 1 \right) \right]\]

\[ \Rightarrow \left( b - a \right)se c^2 a < \tan b - \tan a < \left( b - a \right)se c^2 b\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 11 | पृष्ठ १८

संबंधित प्रश्न

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


The maximum value of sinx + cosx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×