हिंदी

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = Cos 2x on [0, π] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?

योग

उत्तर

The given function is \[f\left( x \right) = \cos2x\] .

Since \[\cos2 \ x\] is everywhere continuous and differentiable. 

Therefore, \[f\left( x \right)\]  is continuous on  \[\left[ 0, \pi \right]\] and differentiable on \[\left( 0, \pi \right)\] .

Also,\[f\left( \pi \right) = f\left( 0 \right) = 1\]

Thus, 
\[f\left( x \right)\] satisfies all the conditions of Rolle's theorem. 
Now, we have to show that there exists \[c \in \left( 0, \pi \right)\] such that \[f'\left( c \right) = 0\] .
We have
\[f\left( x \right) = \cos2x\]
\[ \Rightarrow f'\left( x \right) = - 2\sin2x\]
\[\therefore f'\left( x \right) = 0\]
\[ \Rightarrow - 2\sin2x = 0\]
\[ \Rightarrow \sin2x = 0\]
\[ \Rightarrow 2x = \pi\]
\[ \Rightarrow x = \frac{\pi}{2}\]
Thus,
\[c = \frac{\pi}{2} \in \left( 0, \pi \right)\] such that  \[f'\left( c \right) = 0\] .
​Hence, Rolle's theorem is verified.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.1 | Q 3.06 | पृष्ठ ९

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×