हिंदी

Find the Value of C Prescribed by Lagrange'S Mean Value Theorem for the Function F ( X ) = √ X 2 − 4 Defined on [2, 3] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?

योग

उत्तर

We have

\[f\left( x \right) = \sqrt{x^2 - 4}\]

Here, \[f\left( x \right)\] will exist, if 

\[x^2 - 4 \geq 0\]
\[ \Rightarrow x \leq - 2 \text { or } x \geq 2\]

Since for each \[x \in \left[ 2, 3 \right]\] , the function \[f\left( x \right)\] attains a unique definite value, \[f\left( x \right)\] is continuous on  \[\left[ 2, 3 \right]\].

Also, \[f'\left( x \right) = \frac{1}{2\sqrt{x^2 - 4}}\left( 2x \right) = \frac{x}{\sqrt{x^2 - 4}}\] exists for all \[x \in \left( 2, 3 \right)\].

So, \[f\left( x \right)\] is differentiable on \[\left( 2, 3 \right)\] .

Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists\[c \in \left( 2, 3 \right)\] such that

\[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2} = \frac{f\left( 3 \right) - f\left( 2 \right)}{1}\]
Now,
\[f\left( x \right) = \sqrt{x^2 - 4}\]
\[f'\left( x \right) = \frac{x}{\sqrt{x^2 - 4}}\]\[f\left( 3 \right) = \sqrt{5}\] ,\[f\left( 2 \right) = 0\]
∴  \[f'\left( x \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\]

\[\Rightarrow \frac{x}{\sqrt{x^2 - 4}} = \sqrt{5}\]

\[ \Rightarrow \frac{x^2}{x^2 - 4} = 5 \]

\[ \Rightarrow x^2 = 5 x^2 - 20\]

\[ \Rightarrow 4 x^2 = 20\]

\[ \Rightarrow x = \pm \sqrt{5}\]

Thus, \[c = \sqrt{5} \in \left( 2, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\].

Hence, Lagrange's theorem is verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.3 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.3 | Q 5 | पृष्ठ १९

संबंधित प्रश्न

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


State Lagrange's mean value theorem ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×