हिंदी

Find a Point on the Curve Y = X2 + X, Where the Tangent is Parallel to the Chord Joining (0, 0) and (1, 2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?

योग

उत्तर

​Let:

\[f\left( x \right) = x^2 + x\] 

The tangent to the curve is parallel to the chord joining the points \[\left( 0, 0 \right)\] and \[\left( 1, 2 \right)\] .

Assume that the chord joins the points\[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .

\[\therefore\] \[a = 0, b = 1\]
The polynomial function is everywhere continuous and differentiable.
So, \[f\left( x \right) = x^2 + x\] is continuous on \[\left[ 0, 1 \right]\] and differentiable on \[\left( 0, 1 \right)\] .
Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists  \[c \in \left( 0, 1 \right)\] such that 
\[f'\left( c \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\].
Now, 
\[f\left( x \right) = x^2 + x\]\[\Rightarrow\] \[f'\left( x \right) = 2x + 1\],\[f\left( 1 \right) = 2, f\left( 0 \right) = 0\]
\[\therefore\] \[f'\left( x \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\]\[\Rightarrow\]  \[2x + 1 = \frac{2 - 0}{1 - 0} \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}\]
Thus, \[c = \frac{1}{2} \in \left( 0, 1 \right)\] such that ​\[f'\left( c \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\] .
Clearly,
\[f\left( c \right) = \left( \frac{1}{2} \right)^2 + \frac{1}{2} = \frac{3}{4}\].
Thus, \[\left( c, f\left( c \right) \right)\] i.e.​  
\[\left( \frac{1}{2}, \frac{3}{4} \right)\] is a point on the given curve where the tangent is parallel to the chord joining the points (4, 0) and (5, 1).
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 6 | पृष्ठ १८

संबंधित प्रश्न

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


State Rolle's theorem ?


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


The maximum value of sinx + cosx is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


The minimum value of `1/x log x` in the interval `[2, oo]` is


The function f(x) = [x], where [x] =greater integer of x, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×