हिंदी

Examine If Rolle'S Theorem is Applicable to Any One of the Following Functions. (I) F (X) = [X] for X ∈ [5, 9] (Ii) F (X) = [X] for X ∈ [−2, 2] Can You Say Something About the Converse of - Mathematics

Advertisements
Advertisements

प्रश्न

Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?

योग

उत्तर

By Rolle’s theorem, for a function f : [a , b] →R , if

(a) f is continuous on [a, b],

(b) f is differentiable on (a, b) and

(c) f (a) = f (b),

then there exists some c ∈ (ab) such that f'(c) = 0 .

Therefore, Rolle’s theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis

(i) f(x) = [x] for x ∈ [ 5 , 9 ]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9.

Thus, f (x) is not continuous on [5, 9].

Also , f (5) = [5] = 5 and f (9) = [9] = 9

∴ f (5) ≠ f (9)

The differentiability of f on (5, 9) is checked in the following way.

Let n be an integer such that n ∈ (5, 9).

The left hand limit of  f at x = n  is,

`lim_(h ->o)(f (n + h) - f (n)\)/h = lim_(h->o) ([n + h ] - [n])/h) = lim_(h->o)(n- 1- n)/h = lim_(h ->o)(-1)/h =oo`

The right hand limit of f at x = n is,

`lim_(h->o) (f (n +h )- f (n))/h = lim _(h->o)([n +h] - [n])/h = lim_(h->o)(n-n)/h = lim _(h->o) 0 = 0 `

Since the left and the right hand limits of f at x = n are not equal, f is not differentiable at x = n.

Thus, f is not differentiable on (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s theorem.

Hence, Rolle’s theorem is not applicable on f (x) for x ∈ [5 , 9] . 

(ii)  f (x) = [x] for x ∈  [-2 , 2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = −2 and x = 2.

Thus, f (x) is not continuous on [−2, 2].

Also, f (-2) = [-2] = -2 and f (2) = [2] = 2

∴ f (-2) ≠ f (2)

The differentiability of f on (−2, 2) is checked in the following way.

Let n be an integer such that n ∈ (−2, 2).

The left hand limit of f at x = n is .

`lim_(h->o) (f (n + h) -f (n))/ h  = lim_(h->o) ([n +h]- [n])/h = lim_(h->o)(n - 1- n)/h = lim_(h->o) (-1)/ h =oo`

The right hand  limit of f at x = n is ,

`lim_(h->o) (f(n+h) -f (n))/h = lim_(h->o)([n+h] - [n])/h) lim_(h->o)(n-n)/h = lim_(h->o)(-1)/h = oo`

Since the left and the right hand limits of f at x = n are not equal, f is not differentiable at x = n.

Thus, f is not differentiable on (−2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s theorem.

Hence, Rolle’s theorem is not applicable on f(x)= [x] for x ∈ [ -2 , 2 ].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.1 | Q 10 | पृष्ठ ९

संबंधित प्रश्न

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×