Advertisements
Advertisements
प्रश्न
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
उत्तर
Given :
\[f\left( x \right) = \left( x^2 - 1 \right)\left( x - 2 \right)\]
i.e. \[f\left( x \right) = x^3 - 2 x^2 - x + 2\]
We know that a polynomial function is everywhere derivable and hence continuous.
So, being a polynomial function,
\[f\left( x \right)\] is continuous and derivable on \[\left[ - 1, 2 \right]\] .
Also,
\[f\left( - 1 \right) = f\left( 2 \right) = 0\]
Thus, all the conditions of Rolle's theorem are satisfied.
Now, we have to show that there exists
\[c \in \left( - 1, 2 \right)\] such that \[f'\left( c \right) = 0\] .
We have
\[f\left( x \right) = x^3 - x - 2 x^2 + 2\]
\[ \Rightarrow f'\left( x \right) = 3 x^2 - 4x - 1\]
\[ \therefore f'\left( x \right) = 0 \Rightarrow 3 x^2 - 4x - 1 = 0\]
\[ \Rightarrow x = \frac{- \left( - 4 \right) \pm \sqrt{\left( - 4 \right)^2 - 4 \times 3 \times \left( - 1 \right)}}{2 \times 3}\]
\[ \Rightarrow x = \frac{4 \pm \sqrt{16 + 12}}{6}\]
\[ \Rightarrow x = \frac{4 \pm \sqrt{28}}{6}\]
\[ \Rightarrow x = \frac{4 \pm 2\sqrt{7}}{6}\]
\[ \Rightarrow x = \frac{2 \pm \sqrt{7}}{3}\]
\[ \Rightarrow x = \frac{1}{3}\left( 2 - \sqrt{7} \right), \frac{1}{3}\left( 2 + \sqrt{7} \right)\]
Thus,
\[c = \frac{1}{3}\left( 2 - \sqrt{7} \right), \frac{1}{3}\left( 2 + \sqrt{7} \right) \in \left( - 1, 2 \right) \text { such that } f'\left( c \right) = 0\]
Hence, Rolle's theorem is verified.
APPEARS IN
संबंधित प्रश्न
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x(x −2)2 on the interval [0, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
At what point on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?
Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?
State Rolle's theorem ?
State Lagrange's mean value theorem ?
Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above LPP and solve it graphically and find the maximum profit.
Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`
At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is