हिंदी

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'Sf ( X ) = √ 25 − X 2 on [−3, 4] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?

योग

उत्तर

We have,

\[f\left( x \right) = \sqrt{25 - x^2}\]

Here, \[f\left( x \right)\] will exist,
if  \[25 - x^2 \geq 0\]

\[ \Rightarrow x^2 \leq 25\]

\[ \Rightarrow - 5 \leq x \leq 5\]

Since for each \[x \in \left[ - 3, 4 \right]\] , the function \[f\left( x \right)\] attains a unique definite value.

So,\[f\left( x \right)\] is continuous on \[\left[ - 3, 4 \right]\]

Also, \[f'\left( x \right) = \frac{1}{2\sqrt{25 - x^2}}\left( - 2x \right) = \frac{- x}{\sqrt{25 - x^2}}\] exists for all \[x \in \left( - 3, 4 \right)\]
 so ,\[f\left( x \right)\] is differentiable on \[\left( - 3, 4 \right)\] .
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some 
\[c \in \left( - 3, 4 \right)\]  such that
\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 + 3} = \frac{f\left( 4 \right) - f\left( - 3 \right)}{7}\]
Now,
\[f\left( x \right) = \sqrt{25 - x^2}\]
\[f'\left( x \right) = \frac{- x}{\sqrt{25 - x^2}}\] ,
\[f\left( - 3 \right) = 4\] ,
\[f\left( 4 \right) = 3\]
∴ \[f'\left( x \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 + 3}\]

\[\Rightarrow \frac{- x}{\sqrt{25 - x^2}} = \frac{3 - 4}{7}\]

\[ \Rightarrow 49 x^2 = 25 - x^2 \]

\[ \Rightarrow x = \pm \frac{1}{\sqrt{2}}\]

Thus, \[c = \pm \frac{1}{\sqrt{2}} \in \left( - 3, 4 \right)\] such that

\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 - \left( - 3 \right)}\] .

Hence, Lagrange's theorem is verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 1.09 | पृष्ठ १७

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×