Advertisements
Advertisements
प्रश्न
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.
विकल्प
Maximum
Minimum
Zero
Neither maximum nor minimum
उत्तर
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is maximum.
Explanation:
We have f(x) = 2 sin 3x + 3 cos 3x
f'(x) = 2 cos 3x · 3 – 3 sin 3x·3 = 6 cos 3x – 9 sin 3x
f'(x) = – 6 sin 3x · 3 – 9 cos 3x · 3
= – 18 sin 3x – 27 cos 3x
`"f''"((5pi)/6) = - 18 sin 3((5pi)/6) - 27 cos 3((5pi)/6)`
= `- 18 sin ((5pi)/2) - 27 cos((5pi)/2)`
= `-18 sin(2pi + pi/2) - 27 cos(2pi + pi/2)`
= `-18sin pi/2 - 27 cos pi/2`
= – 18 · 1 – 27 · 0
= – 18 < 0 maxima
Maximum value of f(x) at x = `(5pi)/6`
`"f"((5pi)/6) = 2 sin 3((5pi)/6) + 3 cos 3((5pi)/6)`
= `2 sin (5pi)/2 + 3 cos (5pi)/2`
= `2 sin (2x + pi/2) + 3cos(2pi + pi/2)`
= `2 sin pi/2 + 3 cos pi/2`
= 2
APPEARS IN
संबंधित प्रश्न
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x(x −2)2 on the interval [0, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = tan−1 x on [0, 1] ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?
If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
If f (x) = ex sin x in [0, π], then c in Rolle's theorem is
A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above LPP and solve it graphically and find the maximum profit.
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.