Advertisements
Advertisements
Question
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.
Options
Maximum
Minimum
Zero
Neither maximum nor minimum
Solution
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is maximum.
Explanation:
We have f(x) = 2 sin 3x + 3 cos 3x
f'(x) = 2 cos 3x · 3 – 3 sin 3x·3 = 6 cos 3x – 9 sin 3x
f'(x) = – 6 sin 3x · 3 – 9 cos 3x · 3
= – 18 sin 3x – 27 cos 3x
`"f''"((5pi)/6) = - 18 sin 3((5pi)/6) - 27 cos 3((5pi)/6)`
= `- 18 sin ((5pi)/2) - 27 cos((5pi)/2)`
= `-18 sin(2pi + pi/2) - 27 cos(2pi + pi/2)`
= `-18sin pi/2 - 27 cos pi/2`
= – 18 · 1 – 27 · 0
= – 18 < 0 maxima
Maximum value of f(x) at x = `(5pi)/6`
`"f"((5pi)/6) = 2 sin 3((5pi)/6) + 3 cos 3((5pi)/6)`
= `2 sin (5pi)/2 + 3 cos (5pi)/2`
= `2 sin (2x + pi/2) + 3cos(2pi + pi/2)`
= `2 sin pi/2 + 3 cos pi/2`
= 2
APPEARS IN
RELATED QUESTIONS
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.