English

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S Mean F(X) = X3 − 5x2 − 3x on [1, 3] ? - Mathematics

Advertisements
Advertisements

Question

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?

Sum

Solution

We have,

\[f\left( x \right) = x^3 - 5 x^2 - 3x\]

Since polynomial function is everywhere continuous and differentiable
Therefore, \[f\left( x \right)\] is continuous on \[\left[ 1, 3 \right]\] and differentiable on \[\left( 1, 3 \right)\]

Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some 

\[c \in \left( 1, 3 \right)\] such that
\[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1} = \frac{f\left( 3 \right) - f\left( 1 \right)}{2}\]
Now, \[f\left( x \right) = x^3 - 5 x^2 - 3x\]
\[f'\left( x \right) = 3 x^2 - 10x - 3\],\[f\left( 3 \right) = - 27\],\[f\left( 1 \right) = - 7\]

∴  \[f'\left( x \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{2}\]

\[\Rightarrow 3 x^2 - 10x - 3 = \frac{- 20}{2}\]

\[ \Rightarrow 3 x^2 - 10x + 7 = 0\]

\[ \Rightarrow x = 1, \frac{7}{3}\]

Thus, \[c = \frac{7}{3} \in \left( 1, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 1 \right)}{3 - 1}\] .

Hence, Lagrange's theorem is verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 1.16 | Page 17

RELATED QUESTIONS

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Rolle's theorem ?


State Lagrange's mean value theorem ?


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


The maximum value of sinx + cosx is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×