English

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S F ( X ) = √ X 2 − 4 on [ 2 , 4 ] ? - Mathematics

Advertisements
Advertisements

Question

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?

Sum

Solution

We have,

\[f\left( x \right) = \sqrt{x^2 - 4}\]

Here, \[f\left( x \right)\] will exist,
if

\[x^2 - 4 \geq 0\]

\[ \Rightarrow x \leq - 2 \text { or } x \geq 2\]

Since for each  \[x \in \left[ 2, 4 \right]\]  the function\[f\left( x \right)\] attains a unique definite value.

So, \[f\left( x \right)\] is continuous on \[\left[ 2, 4 \right]\]
Also, \[f'\left( x \right) = \frac{1}{2\sqrt{x^2 - 4}}\left( 2x \right) = \frac{x}{\sqrt{x^2 - 4}}\] exists for all \[x \in \left( 2, 4 \right)\]
So, \[f\left( x \right)\] is differentiable on \[\left( 2, 4 \right)\] .
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some 
\[c \in \left( 2, 4 \right)\] such that
\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 2 \right)}{4 - 2} = \frac{f\left( 4 \right) - f\left( 2 \right)}{2}\]
Now, \[f\left( x \right) = \sqrt{x^2 - 4}\]
\[f'\left( x \right) = \frac{x}{\sqrt{x^2 - 4}}\] ,\[f\left( 4 \right) = 2\sqrt{3}\] ,\[f\left( 2 \right) = 0\]
∴ \[f'\left( x \right) = \frac{f\left( 4 \right) - f\left( 2 \right)}{4 - 2}\]

\[\Rightarrow \frac{x}{\sqrt{x^2 - 4}} = \frac{2\sqrt{3}}{2}\]

\[ \Rightarrow \frac{x}{\sqrt{x^2 - 4}} = \sqrt{3}\]

\[ \Rightarrow \frac{x^2}{x^2 - 4} = 3 \]

\[ \Rightarrow x^2 = 3 x^2 - 12\]

\[ \Rightarrow x^2 = 6\]

\[ \Rightarrow x = \pm \sqrt{6}\]

Thus, \[c = \sqrt{6} \in \left( 2, 4 \right)\] such that 

\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 2 \right)}{4 - 2}\] .

Hence, Lagrange's theorem is verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 1.13 | Page 17

RELATED QUESTIONS

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Rolle's theorem ?


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


The minimum value of `1/x log x` in the interval `[2, oo]` is


The function f(x) = [x], where [x] =greater integer of x, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×