English

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π. - Mathematics

Advertisements
Advertisements

Question

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.

Solution

We have

`f(x)=sinx−cosx             0<x<2π `

`f'(x)=ddx(sinx−cosx)        `

`=cosx+sinx`

For maxima and minima, we have

`f'(x)=0`

`⇒cosx+sinx=0`

`⇒cosx=−sinx`

`⇒x=(3π)/4,(7π)/4`

Now, 

`f"(x)=d/dx(cosx+sinx)                   `

`=−sinx+cosx`

`"At " x=(3π)/4`

`f"((3π)/4)=−sin((3π)/4)+cos((3π)/4)`

`=-1/sqrt2-1/sqrt2`

`=-sqrt2`

`⇒f"((3π)/4)<0`

Thus`x=(3π)/4`  is the point of local maxima.

Local maximum value `f((3π)/4)`

`=sin((3π)/4)−cos((3π)/4)`

`=1/sqrt2+1/sqrt2=sqrt2`

`At  x=(7π)/4`

 

`f"((7π)/4)=−sin((7π)/4)+cos((7π)/4)`

`=1/sqrt2+1/sqrt2=sqrt2`

`⇒f"((7π)/4)>0`

Thus`x=(7π)/4` is the point of local minima.

Local minimum value of `f(x)=f((7π)/4)`

`sin((7π)/4)-cos((7π)/4)`

`=-1/sqrt2-1/sqrt2`

`=-sqrt2`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×